Case 4:05-cv-00329-GKF-PJC  Document 2270-25 Filed in USDC ND/OK on 06/19/2009 Page 1 of 6

EXHIBIT W




Case 4:05-cv-00329-GKF-PJC Document 2270-25 Filed in USDC ND/OK on 06/19/2009

Nonparametric Estimation of a Survivorship Function

BRUCE W, TURNBULL"®

with Doubly Censored Data

A simple itarative procedurs is proposed for obtalning astimates of a
response time distributlon when some of the data are censcred on the
feft and some on thae right. The precedure is based on the product-limit
methad of Kaplan and Meler [15], and 1t also uses the Jdea of self-con-
sistency due to Efren [8). Under fairly general assumplions, the
method is shown to yiald unique consistaat maximum Hkellhood es-
timators. Asymptotic expressions for thelr veriances and covarlances
are derived and an axtensfon to the case of arbitrary censoring is sug-
gastad,

1. INTRODUCTION AND SUMMARY

A common problem in stalistical analysis ix the
determination of the distribution of the time, T, taken
for an cvent of interest to oceur. For instance, in medical
follow-up studies, the event of interest is the relapse or
death of a patient; and in life-testing 1t is the time to
failare of an item that is under investigation. In this
article all such events will be termed “deaths,’ and thus
the problem is to estimate the lifetime distribution, thab
g M) = Prob (T <) lor 1.2 0.

In a sainple of N observations Ty, T, - -+, Tx, where
each lifetime T';is observed precisely, the natural estimate
is the sample distribution function F(f), which is the
proportion of observations with values less than or equal
to the argument ¢ In this article we shall consider the
situation where net all the T'; are observed exactly but
some are censored on the right and soms on the lefi, For
each item 4 (1 €¢{ < N), we assume that there are
Bmits of ebservation Ly and ¥ (with L; £ Uy), which
are sither fixed constanty or random variables independent
of the [Ty}, Thus {L;, Uy is a “window" of observation
and the recorded information is:

X = max Imin (T, U3), L:)-

Also, for cach item 4, it is known whether X; = L;
(Le., Ty & Z: and the itern i3 left censored or a “late
entry”), or Xy = U; (le., T3 > Uy and the itom is right
censored or a "loss”), or Xy = Ty {ie., Li < T € U)).
We can denote a loss at time § by tha symbol “>1,)" a
late entry by "< and a preeise observation by
simply ¢

Gehan [107, Mantel [19], and Psto [227] huve given
examples where double censoring might arise in medical
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applieations. Another example oceurred in & recent
study of Afriean infant precocity by Teiderman ef al.
[17). Their purposs was to establish norms for infand
development for a community in Kenya in order to
make comparisons with known standards in the United
States and the United Kingdom. The sample consisted
of 65 children born between July 1 and December 31,
1969, Starting in Junuary 1070, cach child was fested
monthly to see if he had learned fo accomplish ecrtain
gtandyrd tasks (see [4]). Here T would represent the
time from birth to fivst lsarn to perform a particular task.
Late entries oceurred when it wag found that, at the very
first test, some children eould already perform the task;
whereas losses occurred when some infants were stiil
unsuceessful by the end of the study.

The more commun case is whon there are no late
entries {all Iy = 0) and this has been trested extensively
in the literature, Qften some parametric form for F is
assumed such as an exponential, lognormal or Weibull,
The method of maximum likelihood n such a situation
was first used by Boug [8] and most recently by Herman
snd Patell [14] and Moeschberger and David [21].
Nonparamebris cytimates can be obtained by the actuarial
method (see, e.g., [51), or by the product-limit (PL} or
reduced-sample (1S} methods deseribed in [157. Non-
parametrie two sample tests for comparing two such
lifetime distributions have been proposed by Halperin
[12], Gilbert {117, Ciehan 9], Mantol 18], and Efron
(8], Two ssmple tests with doubly censored data have
been treated by Gohan [10] and Mantel {197,

In this arficle we treat the cstimation problem when
there is both Ieft and right censoring, (This should not
be confused with the case of right censoring and left
truneation, which is discussed in Mante! [18, p. 166]).
We assunmie that there is a natural discrete time scale

0 <t <ty < o+ < by, which would oceur, for instance,

if iterns were examined only at disercte times (monthly
in the case of the Teiderman study just mentioned).
Alternatively, wo can assume that the data is grouped
and Jifetimes are recorded only as belonging to one of the

m intervals (0,4, (i, fa), - -, (fw-, fn]. We lof § ha
the number of items observed to have died in age period..

{fi21, f2], ps be the number of late entries ot age t: and
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A be the number of losses at & (1 £ 4 € m). The situa-
tion is illustrated by the [ollowing fabulation:

Age
Type of obeervation & ls e I
Deaths B [ .
Losses (>) A . M Am
Late entries (<) B Iy Hm

We have made the assuraption that the late entries
21 all occur at the end of age period (44, 4] and that the
losses A; all oecur at the beginning of (£, f:a]. Alternative
agsumptions are discussed in Hection 4.

In Section 2 a simple iterative procedwre is proposed
to obtain estimates of Py, Py, - - -, Pn where P, = P({)
and P(i) = 1 — F(1) is the survivorship funetion, These
sstimatos will be denoted by P1, Pa, ¢, Pn. The pro-
cedure s based on the idea of “sell-consistency’’ which
is due to Efron [87. In Section 3, the procedure is shown
to yicld unique maxionum likelihood estimates which are
consistent, and expressions for their variances and co-
variances are given.

2, THE SELF-CONSISTENT ESTIMATORS

First consider the p; late entries at age f;. The esti-
mated mean number of these that die in period (4_s &7
forj € 18 gy, where ;= (Fya — Pj)/(1 = P isen
estimate of Prob (52 < T € |7 € 4. With this in
mind, we now consider an “adjusbed” problem obtained
by rep]a(,mg vach & by 8% = 8 + ZI%; s, leaving each
A unchanged, and repla.cmg each p; by zero. Since this
adjusted date sct is singly censored only, we can write
down cxplicitly its PL estimates {F}] say, using the
method of Kaplan aid Meier [15]. Wa say thab the esti-
mates |2y} are self-consistent if P =2 (1 € i< m).

Therefore the problom is to find numbers 1 > P, > P,
> .+« > P, > 0 which satisfy the following 1mphc1t
equatmns

P 1= {1 , ' : {2,1)
Bi=ghe (F=23-m)

where
- 6;)/”’:; ﬂ: Ei-: ()'f + 5;):

‘SJ =8+ :«; wej FIRif

o= {nj

and

ay'={Pr— B)/(1 - B) far j< i

An ijterative method for solving these equations
immediately suggests itself:

A, Obtain initial estimates (P, 1 ¢ € m]. This set could he
any decrensing sequence of 7t numbers between 1 and 0, but
it mnight be sensible to take the PL estimates obtained by
assuming nil the (]} fo e zero..

B. Form

aly= (P, — PR/ — P, all §<54,

and sat ,
Sy =4+ Yinpwa, LSism

C. Obtain ’impruvad axtimates by tsking all y'f w= 0, veplacing
5 by 5; (1 £7 £m) end forming the PL estimates on

this "adjusted” data ssb, L.e.,

=1 =8/,

and
P{(': QJ'PJt—l: (7=2,8-,m);
wheve B ..
g = (ny— 8/,
and

= B (v + ).

. Return to Step B with the {PY] replaced by 1P}, ste.
. Blop when the required acouraay has been nehieved (e.g., the
rule may he to stop when max; <y | P — Pt | < 0008,

say).
The proeedure is simple to program on a compuber
and converges fairly rapidly. As & small numerical

=g

example, consider the data in the following tabulation: .

Age
Type af obsgroation b A is iy
Ireaths 12 i) 2 3
Losses 3 2 0 3
Late entries 2 4 4 &

The initial values are:

=120, 60, 20, 30

Po= (613, 0.383, 0.287, 0.144.
The first iteration yields:

¥ =198, 05 28 38

P o= 0540, 0.303, 0.214, 0.094,
After three iterations, the values settle down on:

& = 203, 9.3, 2.1, 3.6

P = 0.588, 0.295, 0.210, 0.085.

Tn Seetion 3 we will show that {2;]) arc in fact maxi-
mura Likelihood estimates. It should be noted that there

are several special cases when no ieration is needed and.
explicit estimates can be obtained. First, of course, if all-

ui =0, then we have single censoring and the PL
estimates are availuble immediately. By reversing the
time seals, the PI method can again be applied in the
ease of left censaring only (all As = 0). Also if the first
tabulation iz such that there exists an integer ¢ sueh
that gy = 0 for all £ > £ and A: = 0 for all ¢ < ¢, there
is & binomial estimate available for £,. Then, by “working
towards each end of the tbne scale,” the appropriate
onditional probabilities can be estimated and the {2}
evaluated by the PL mothod. Finally there is the special
case of all 5; = 0. Ayer ¢! al. [1] have derived explicit
expressions for the maximwm likelihood estimates in this
case, and these too have the property of self-consistency.

3. THE MAXIMUM LIKELIHOQD DERIVATION

We now state end prove the fundsmental theorem of
this urticle. .

Theorem: 1f §; > G (1 £ i < m), then the solution

b = (2, 2y, + +, Pu) of (3.1), obtained by the iterative

Page 3 of 6




Survivorship Analysis with Doubly Censored Data

procedure of Seetion 2, is the unique maximum likelihood
estimate of (P, Py, «+ -, Pa).

Pyoof: Under the asswmptions made in Section 1, the
likelihood function is proportional to:

T (Pry — PuP(L ~ Py,
where Py = 1, The log-likelihood L is given by:

L= 3 [851og (Pry ~ P3)
-+ alog £ -+ pslog {1 - P

The maximum Jikelihood estimates will be those values
of {P;] whick maximize L subjest to the condition
12 Py ++- 2 Pn2 0 (This constraint makes the
problem similar to those of isotonic regression, see [31.)

Tirat note that if An = 0, then L s maximized by
taking P = 0, and the problem can be treated as one
with m — I periods and M-, roplaced by Ao + &u Int
this ease uw contributes no information to the estimation
of the | P;] and this sgrees with intuition. Thus without
logs of generalily we may assume An > 0,

Differentiating I with respect to Py, Py, -+, Pa and
getting the derivatives equal to zero, we obtain:

arL & 4 . -0
aP; Py~ P P~ Pia B 1— 5 !
[ =1,2, . ,m~1);
oL . 7\(J 3 ym ) &1
B

In Lemms Al of the appendix, we show that any
solution {2;) of (2.1) also satisfies the likelihood equa-
tions (3.1). Also the estimates obtained in Section 2
clearly satisfy the condition 1> P> «-+ > Pa >0,
since we have assumed A, > Dand § > 0 (1 < 7 < m).
Thus the {2} give staiionary values of the likelihood
funetion, To show that this is & unique meximum we
examine the matrix D of second derivatives.

Let D,‘j = aQL/anaPJ'; then

D — e _ S, A
BT Py~ P (Pi— Py Pi
- #e .
(1“.?;)2 (z=1,2,--',m—l)
D dm Am Mm (3 2)
T B — Pt P (1 Py ‘
Beg1
Diri = Dia = m
(3= 1:21 ...’m._.l)
Dy=0, for [i—j| 28

In Lemma A2 of the appendix, we show that D is negative
definite. Hence all solutions of (3.1) yield maxime, But
L is s continuous function for 1 > Py > ... > Pr >0
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and so if L has two maxima, thore must be & minimum
betwoen them, There are no minima and so L has a
unigque maximum. This completes the proof.

As in [7] and [15], the maximum likelihood esti-
matora are consistent when = and the time points
{t;;1 € i € m] remain fixed while the number of ifems
observable at age ¢; tends fo infinity for all 1, In this case,
the problem is essentially one of estimating the param-
eters of a multinomial distribution and consistency
follows by the law of large numbers. A move interesting
preblem is the one of consistency when m —= and the
widths of the intervals become arbitrarily small—it is
hoped to treat this case in a later paper.

The Fisher information matrix J is the matrix —B,
where D is given by (3.2). J is o symmefric Jacobi
matrix, i.e., 1t is of the form:

a di 0 O 0 1]
di ¢ 4y O 0 0
0 di ¢ s 0 0
0 4] ds ] ] 1]
0 0 0 0 - ens dans
0 0 a 0 dm..z Cry
where ¢ = — Du (L £1<m) and dy = — Dy

(1<¢<m~1). The inverse V of J i& a Green's
matrix (see, e.g., [16, Ch. 8.3]) and is given by:

Vi = Gainted *Bmaxting,

where
-1 1,3 -t~ 1
a,-=( )J(,. t )d;---dm_1
det {7} 1,2 - i~-1
@2<i<m—1)
iDL e,m 1
I o) o
J + -|-| ) ")m d.fd.H-l"'dm—l

Agjsm—1)
ay=—dsds - B/det ()

= [ lvi‘}'(l’z,.”m“i)/d 4 ()
G = ) 1,2, +om—1 N

by = ("' 1)”‘1

and J{4& ) represents the determinant of the matrix
formed from ] by removing all rows and eolumns exeept
Tows 1y, 1y, -+ -, 1, and columns Jy, fy, -+, fn

Denote V{P) as the value of the matrix V when the
[P} are replaced by their maximum likelihood estimates
{2:}. Then V(P) in an asymptotically unbiased estimate
of the variance-covariance matrix of the {£). Thus
confidence sets and tests of hypotheses concerning the
[P.] can now be constructed. In fact, for testing & null
hypothesis, veriances should be based on the null

-situation (see [20, p. 4907); however, these values will be

close for large sample sizes. For the numerien! example
given in the tabulation in Section 2, the matrix V(P) is
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{only the upper triangular part is shown):

7.50 342 2.98 0.1
598 3.98 1.60
506 2.02

2,58

X 10-e,

4, DISCUSSION AND COMNCLUSIONS

The idea of self-consistency was first proposed by
Bfron [8, Sec. 77, who showed that a similar invariance
property held for the PL estimatos in the ease of single
censoring. This article exfends that idea to derive an
iterative procedurs for obtaining maximum likelihood
estimates when there is double censoring. This procedure
is simpler than the usual one of solving the maximum
likelihood iterative equations, which involves ealeulation
and updating of the matrix of second dexivatives of L a$
ench stage. (For o discussion, see [20].)

The mothod of Section 2 is designed for the situation
where there is a discrete iime scale or the data can be
grouped naturafly. In this case we need only aharactorize
F by 1tz eumnulative probability at the finite number of
points which are of inferest. If there is a continuous time
seale there is elearly some information-lost by grouping
the dats, sithough this loss is small in practice. Other
methods which might be appropriate here arc based on
estimation of the hezard rate, which is usually assumed
constant within cach interval (see, e.g., [13, 2, Sec. 3]).
The assumptions concerning the timing of the losses and
lute entries correspond with those made by Kaplan and
Meier [15, Sec. 1.4] and will be valid if the inspection
procedure is az follows: Examine a cohort alt of age ¢,
observe the number of deaths 3 since the lsst examination,
recerd the number of late entries ¢ known only to have
died at or before {; finally lose contact with a number A
of the survivors, This applied in the Leiderman study,
for exemple. However, Kaplan and Meier (Sect. 4.1}
show how fo ireut alternalive situations, and their
modifications of the PL method can be carried over to
the procedure of Section 2,

Finally, it is an interesting exercise to gencralize the
procedure to derive the self-consistent estimates for the
[P} in the problem considered by Harris, Meier and
Tukey [13] and also by Mantel [197]. Here, the age of
death is never known exactly, but is known ouly to fall
into some interval, perhaps semi-infinite, where this
interval differs from item to item.

APFPENDIX

Here we prove two lammas needed in the proof of the theorem of
Bection 3. The notation used is tho sume g5 that in Scctions 2 and 8.

Levwing Af: Let P = (P, Py, -+, I’n) bs tho gelf-consistent
estimates defined by (2.1). (We hhaﬂ u.rmt. the earet signa.) Then P
aatisfes the likelihood equations (3. 1)

Proaf: Fust note that if An, &1, -+, 30 87 positive then 1 > A
o> Py > 0. It s required to prove aL/aP; = 0 for {=1,
2, «.., m, Wo do this first for £ = m and then proesed by induction
to show ibis iue fopd =m — L, m — 2, -+, 1,

Now
|8
P = Pooyr ——pr |
R
whérs
' Py = P
iy =8 e
'm a 1= P, #

Therefore, substituting for &, we obtein:
MiBact = Bu + 2adPrd (Pass ~ Palpala/{1 — Pa)

or

fa )\n- .f‘m
Pon—Pa B, TilE O
Hoenco 3L/0Pn = 0, For fixed 2 < m assuma dL/8F; =0 for
F=mm =1 i1 Now
? ]
Po= P,;.x-’i‘ w Pigs ....’_7“_'1:‘_:{__}1_.
ny Ariy + he 8

Substituting for & = & + (Pis — P} T (/1 — P) and re-
arrenging tevms we oblain:
ey &
Pr Pl’—i et P

-z Lr Ps (A1}

By tha indlustion hypathesis, . eqr {35/0F) = 0, or

5:3(- L

it
PP, P “+ Eimitt

A » n
7 Zf-4+11 -
Subsbibuting in (A.1), we obtain:

_ b Sz 13 a5
P:.,] — Pf 1~ .lpﬂ

—_ Pe’.,\-h f
.
+ 3‘—-’5‘ ~ Bt =0 (A3

£l

Wa now claim that, for 0 <{ < m ~ 13

ﬂt-i—l )
- oo
7: -k SN

(A.3)
Sine Pa = Puotha/ (b + 5n)y We Bave mu/Pat = hn/Pa and
(A.3) is true for ¥ = m — L. Assume {A.3} is troe for ¢ = £ Then
Yjup /P = (nH-x + M)/Pe = vy — 5/Pt = n¢/Piy Thus
(A3) is trua for ¢={ ~ land by induction trug for oll 0 <+
<m-—1

Combining (A.2} aod {A.3) we obtain:

ab 8y Fig1 M I

= 17

Rdoul . e e - = {}.
ar; Py = P; Pr—Pos P

The preof of Lemma Al now follows by induction.

Temme Ag: The matrix D given by {3.2) is negative definite,
DProsf: Wa will show that tho matix J=—D is positive definite.
Tor §=21, 2 -+ m, lel J; denote the value of the jth Jetding
principal minor. 1t suffices to show thetd,, /3, « + 1, Jw are all positive.
Forl €15 m, bz = &/ (P — Pihand

7i = (/PR + [ad (1 — PO%L

Note that 1 = 0 and z¢ > 0 sincs sl 4, > 0 under the hypotheses
of the theovam. Then by (34.2),

1] —&3 i) g

g g —zz v A

4= ] -~ o 4]
@ 0 0 o o2m

whore 2; & gy b2 Hyslor ] 7S m end gmp =0,
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Thus,
Ji=zi by >0
s mtmtuMototy) —£>0
and

Jio= (o 4 20 v Tio — 23 i (A.4)

HfwesetJy=londJ.y =0 then {Ad) holdsforf =1 2, .+\ m.
We proceed by industion. Asswme Jo, Jo « -+, Jioa are all positive,
Then using (A.4) wa have: .

i3y = oW = milaadion — 2T — 2 )
> g@ {2l i),

ginee Jig > 0, 2 > 0.
Herating, we have:

Jo > omegye o om{ly — @elo)) = mona e > 0.
The proof of Lemma A2 now follows by induotion.
[Received July 1972, Revised April 1973.7)

REFERENCES

{17 Ayar, M., Brunk, H.DD., Ewing, G.M,, Reid, W.T. and Silver-
man, B, "An Empirical Distribotion Function for Ssmpling
with Incomplete Information,” Annals of Mathematical Sta-
#istics, 26 (December 1955), 8417,

(27 Barlow, H.E, “Soma Recenl Developments in Relinbility
Theory,” Selected Statisifcal Papers, Mathematical Cenbre,
Amsterdsm, 2 {1968}, 49-66,

3] y Bartholomew, D).J., Bremner, §.M. and Brunk, H.I),,
Statistical Inference wnder Order Restrictions, New York: John
Wiley and Sons, Inc, 1672,

[4] Baylsy, N., Bayley Scales for Infont Development, New York:
Paychologienl Corp., 1989,

[53 Berksom, J. and Guge, R.I%, “Caleulation of Survival Rates
for Cancer,” Proceedings of the Stefl Meelings of the Mayo
Clindz, 25 (1050}, 270-88.

[8] Roag, J.W., “Maxiraum Likelihood Estimates of the Proportion
of Patients Cured by Cancor Therapy,"” Journal of ihe Royal
Statistical Socisty, Sev. B., 11, No. 1 (1#48), 15-53,

[77 Brunk, H.D., “Maximum Likelihood Estimeles of Monotone
Parameters,” Arnoly of Mathemalical Stoliséies, 26 (Decembor
1855), 807-16.

Case 4:05-cv-00329-GKF-PJC Document 2270-25 Filed in USDC ND/OK on 06/19/2009

173

[8] Biren, B, “The Two-Suwmple Problem with Censored Data,”
Proceedings of Fifth Berkelsy Symposium on Mothematical
Slatistics and DProbability, University of Californin Press, 4,
1047, 83153,

[83 Gehan, B.A,, “A Genernlized Wilcoxon Test for Comparing
Arbitrarily Singly Censored Samples,” Bipmetrika, 52, Nos, 1
and 2 (1985}, 203-23.

[10] y A Genurslized Two-Sampls Wilenxan Test for Doubly
Censored Data,” Biomeirika, 52, Nos, 3 and 4 (1985}, 850-3.

[11] Gilbert, J.?, “Bandom Censorship,” Unpublished Ph.D.
thesls, Univessity of Chiongo, 1862, .

[12] Halperin, M., ‘Hxtension of the Wileoxon-Munn-Whitney
Test to Samples Canaored at the Same Fixed Poiut,” Journal
of the American Statistical Association, 55 (March 1960),
12538,

[13] Hariia, T.E.,, Meier, P. and Tuokey, J.W., “"Iming of the
Distribution of Events Between Observaiions,” Ifuman
Biology, 22 (December 1050), 249-70,

[14] Herman, R.J. and Patell, RIK.N., “Maximum Likelihood
Estimation for Mulli-Bisk Model,” Technomearics, 13 {May
1971), 385-58.

[15] Kaplan, E.L, and Meier, P., “Nonparsreiric Bskmsativn from
Incomplete Ohscrvations,” Journal of the American Stalistical
Associntion, 53 (June 19568}, 45781,

[18] Karlin, 8., 7'niat Positivity 7, Stanford University Press, 1068,

[17] Leiderman, PIL, Babu, D., Kagia, J., Kraemer, H.C. and
Leidarman, G.F., "African Infant Prevecity aend Soma Sosiz!
Influences During the First Year,” Najure, 242 {Maroh 1973},
247-9. .

[1R] Mantsl, N., “Evaluntion of Survival Data and Two New Rank
QOrder Statistics Arising in its Consideration,” Concer Chemo-
therapy Reporls, 50 (March 19683, 163-70.

{193 — -, "Ranking Proeedures lor Arbitrarily Restrioted Obsar-
vations,” Bigmetrics, 23 (March 18G7), 85-78.

and Myers, M., “Problems of Convergence of Muxinum
Likeltheod Iterative Procedures ia Multiperamster Siuations,”
Journal of the American Statistical Associntion, 66 (Saptember
1971), 434-901,

[21] Moeschbergar, M L. and David, H.A., “Life Tests under
Competing Causts of Fuilure and the Theory of Competing
Risks," Biometrics, 27 {Decamnber 1971), 509-33.

[22] Pato, B., "Hxperimental Survival Curves for Intorvel-Censored
Dute,” Applied Staifsties, 22, No. 1 (1973}, 86-01,

F201

Page 6 of 6




